

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Cost Functions

Mean Squared Error (MSE)

$$MSE = \frac{1}{m} \sum_{i=1}^m (y^{(i)} - \hat y^{(i)})^2$$

Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^m (y^{(i)} - \hat y^{(i)})^2}$$

Mean Absolute Error (MAE)

$$MAE = \frac{1}{m}\sum_{i=1}^m \vert y^{(i)} - \hat y^{(i)} \vert$$

Comparisons

MSE v.s. MAE

	MSE	MAE
————————	—————–	——————
Robustness to outliers	Low	High
Stability of solution	High	Low
Number of solutions	Unique	multiple

Decision Trees

Classification

Training

CART algorithm

	Find each feature’s best split

	For each continuous features, sort its values and find a value such that it achieves the best split

	For each categorial feature, find a category such that it achieves the best split

	Among the best splits in the previous step, select the one minimizing the cost function

	Split the node with the feature found in the previous step.

Cost function to minimize

	Gini impurity Based

$$J(k, t_k) = \frac{m_{left}}{m}G_{left} + \frac{m_{right}}{m}G_{right}$$
$$\text{where }G_i = 1 - \sum_{k=1}^n p_{i, k}^2$$

	Entropy Based

$$J(k, t_k) = \frac{m_{left}}{m}H_{left} + \frac{m_{right}}{m}H_{right}$$
$$\text{where }H_i = - \sum_{k=1}^n p_{i, k} \log_2(p_{i, k})$$

	Comparison between Gini impurity and Entropy

Most of the times, it does not make a difference choosing either of them. However, Gini impurity tends to isolate the most frequent class in its own branch of the tree while entropy tends to produce slightly more balanced trees.

Time complexity

Training time complexity is $O(n\text{ }m\text{ }log(m))$.

Regularization

	maximum depth of decision tree (max_depth)

	minimum number of sample split: the minimum number of samples a node must have before it can be split. (min_samples_split)

	minimum number of samples a leaf node must have (min_samples_leaf)

	maximum number of leaf nodes (max_leaf_nodes)

	maximum number of features to evaluate for split (max_features)

Code

from sklearn.tree import DecisionTreeClassifier

tree_clf = DecisionTreeClassifier()
use "criterion" to choose between gini and entropy
tree_clf.fit(X_train, Y_train)

Regression

Model

In Decision Regression models, the predicted value is the mean of the trained samples in the leaf node that predicted instance ends up in.

$$\hat y_{node} = \frac{1}{m_{node}} \sum_{i \in node} y^{(i)}$$

Training

Cost function to minimize
$$J(k, t_k) = \frac{m_{left}}{m}MSE_{left} + \frac{m_{right}}{m}MSE_{right}$$

Code

from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor()
tree_reg.fit(X_train, Y_train)

Instability of Decision Tree

	Decision trees splits perpendicularly to an axis which makes them sensitive to rotation of dataset. Therefore, applying PCA is a good idea before feeding training data into a decision tree model.

	Decision Trees are very sensitive to small variations in the training data.

	The training algorithm used by Scikit-Learn is stochastic since the algorithm selects the sets of features to evaluate at each node randomly.

Ensemble Learning

Voting

Model

Aggregate the predictions of several different models and predict the class that gets the most votes.

Due to the law of large number, even if each classifier were a weak learner (classifiers that perform only a little better than simply guessing), the ensemble could still be a strong learner.

Voting algorithm works best when the predictions are as independent from one another as possible.

	Hard Voting

Predicts the class that gets the most votes from the individual models

	Soft Voting

Predict the class with the highest probability, averaged over all the individual classifiers. Soft Voting is available when all the individual classifiers have predict_proba() method

Code

from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression

log_clf = LogisticRegression()
rnd_clf = RandomForestClassifier()

voting_clf = VotingClassifier(
 estimators=[('lr', log_clf), ('rf', rnd_clf)],
 voting='hard' # for soft voting, assign `soft`
)
voting_clf.fit(X_train, Y_train)

Bagging & Pasting

Model

Train the same based model on different random subsets of the training set. The final predictions is typically the most frequent predictions of from the individual models or average for regression.

Bagging: sampling process is performed with replacement

Pasting: sampling process is performed without replacement

Random Patches: sampling both training instances and features.

Random Subspaces: sampling features but keeping all training instances

Why the net result is generally better?

Each individual model has a higher bias than if it were trained on the original training set. However, the ensemble model will achieve a similar bias but lower variance than a single model trained on the original training set.

Comparison between Bagging and Pasting:

Without replacement during the sampling process, pasting results in a slightly lower bias than bagging because each based model is trained on a more diverse subset. However, each based model also ends up being less correlated; therefore, the variance of the ensemble is reduced.

Out-of-Bag Evaluation

Use the instances in the training set which is never sampled and used to train models to evaluate the performance of the ensemble model so that the ensemble model could be evaluated without a separate validation set.

Code

If a based model has `predict_proba` method,
BaggingClassifier automatically performs soft voting
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier

bag_clf = BaggingClassifier(
 DecisionTreeClassifier(),
 n_estimators=500,
 max_samples=100,
 bootstrap=True, # for bagging, bootstrap=True; for pasting, bootstrap=False
)
bag_clf.fit(X_train, Y_train)

Out-of-bag evaluation

bag_clf = BaggingClassifier(
 n_estimators=500,
 max_samples=100,
 bootstrap=True, # for bagging, bootstrap=True; for pasting, bootstrap=False
 oob_score=True,
)
bag_clf.fit(X_train, Y_train)
print(bag_clf.oob_score_)

Random Forests

Model

Random Forests is an ensemble of Decision Trees, trained via the bagging method.

The algorithm introduces randomness when growing trees; instead of searching for the very best feature when splitting a node, it searches for the best feature among a random subset of features.

Code

from sklearn.ensemble import RandomForestClassifier

rnd_clf = RandomForestClassifier()
rnd_clf.fit(X_train, Y_train)

Boosting

###AdaBoost
Training (Classification)

	Initialize $w^{(i)} = \frac{1}{m} \text{for i = 1 … m}$

	For t = 1 … T

	train $model_t$ and compute error on the training set
$$r_t = \frac{\sum_{\hat y^{(i)} \neq y^{(i)}}w^{(i)}}{\sum_{i=1}^m w^{(i)}}$$

	Compute $model_t$’s weight α_t. η is learning rate
$$\alpha_t = \eta \log{\frac{1 - r_t}{r_t}}$$

	Update $w^{(i)}$ for $i = 1,…,m$
$$w^{(i)} =
\begin{cases}
w^{(i)} & \text{if } \hat y_t^{(i)} = y^{(i)} \
w^{(i)}exp(\alpha_t) & \text{if } \hat y_t^{(i)} \neq y^{(i)}
\end{cases}$$

Model Prediction (Classification)
$$\hat y = {argmax}k {\sum{t=1}^T}_{\hat y_t = k} \alpha_t$$

Code (Classification)

from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier

ada_clf = AdaBoostClassifier(
 DecisionTreeClassifier(max_depth=1),
 n_estimators=200,
 algorithm='SAMME.R',
 learning_rate=0.5,
)
ada_clf.fit(X_train, Y_train)

###Gradient Boosting
Training (Regression)

For t (step) = 1…T

	if t == 1:

	fit a model_t with the training dataset

	else:

	fit a a model_t with $\epsilon^{(i)}$

	calculate residual error
$$\epsilon^{(i)} = y^{(i)} - \hat y_t^{(i)}$$

Model prediction (Regression)

$$\hat y = \sum_{t=1}^T model_t(x)$$

Code (Regression)

from sklearn.ensemble import GradientBoostingRegressor

bg_reg = GradientBoostingRegressor()
bg_reg.fit

Linear Models

Regression

Linear Regression

Model:

$$\begin{align}
\hat y & = \theta_0 + \theta_1x_1 + \theta_2x_2 + … + \theta_nx_n \nonumber\
& = \theta^T \cdot \mathbf x \nonumber
\end{align}$$

Cost Function: Mean Squared Error

$$MSE(\theta) = \frac{1}{m} \sum_{i=1}^m (\theta^T \cdot \mathbf x^{(i)} - y^{(i)})^2$$

Training:

	The Normal Equation:
$$\hat \theta = (\mathbf X^T \cdot \mathbf X)^{-1} \cdot \mathbf X^T \cdot \mathbf Y$$

	Gradient Descent:

Refer to Gradient Descent

	The Normal Equation v.s. Gradient Descent

 	
 	Normal Equation
 	Gradient Descent

 	Pros
 	

 	No need to choose α

 	No need to iterate

 	

 	Work well even n is large

 	Cons
 	

 	Need to calculate $(\mathbf X^T \mathbf X)^{-1}$

 	Slow if n is very large

 	

 	Need to choose α

 	Need to iterate

CodeLinear Regression with Normal Equation:

from sklearn.linear_model import LlinearRegression

lin_reg = LlinearRegression()
lin_reg.fit(X_train, Y_train)
lin_reg.predict(X_new)

Linear Regression with Gradient Descent

from sklearn.linear_model import SGDRegressor

sgd_reg = SGDRegressor(n_iter=n_epochs, penalty=None, eta0=learning_rate)
sgd_reg.fit(X_train, Y_train)

Ridge Regression

Add L2 regularization to Linear Regression’s Cost function.

Model:

the same as linear regression

Cost Function:

$$J(\theta) = MSE(\theta) + \alpha\sum_{i=1}^n \theta_i^2$$

Training:

	The Normal Equation (Cholesky):
$$\hat \theta = (\mathbf X^T \cdot \mathbf X + \alpha \mathbf A)^{-1} \cdot \mathbf X^T \cdot \mathbf Y$$

where $\mathbf A$ is an identify matrix

	Gradient Descent:

Refer to Gradient Descent

Code

Ridge Regression with Cholesky Equation:

from sklearn.linear_model import Ridge

ridge_reg = Ridge(alpha=1, solver='cholesky')
ridge_reg.fit(X_train, Y_train)
ridge_reg.predict(X_new)

Ridge Regression with Gradient Descent:

from sklearn.linear_model import SGDRegressor

sgd_reg = SGDRegressor(penalty="l2")
sgd_reg.fit(X_train, Y_train)

Lasso Regression

Add L1 regularization to Linear Regression’s Cost function.

Model:

the same as linear regression

Cost Function:

$$J(\theta) = MSE(\theta) + \sum_{i=1}^n \vert \theta_i \vert$$

Training:

	Gradient Descent

The Lasso cost function is not differentiable at $\theta_i = 0$, but Gradient Descent still works fine if subgradient vector is used when $\theta_i = 0$

code

from sklearn.linear_model import Lasso

lasso_reg = Lasso()
lasso_reg.fit(X_train, Y_train)
lasso_reg.predict(X_new)

from sklearn.linear_model import SGDRegressor

sgd_reg = SGDRegressor(penalty='l1')
sgd_reg.fit(X_train, Y_train)
sgd_reg.predict(X_new)

Elastic Net

Add a mix of L1 and L2 regularization into Linear Regression’s cost function

Model:

the same as linear regression

Cost function

$$J(\theta) = MSE(\theta) + r\alpha\sum_{i=1}^n\vert\theta_i\vert + \frac{1-r}{2}\alpha\sum_{i=1}^n\theta_i^2$$

Training

	Gradient Descent

Code

from sklearn.linear_model import ElasticNet

elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5)
elastic_net.fit(X_train_, Y_train)
elastic_net.predict(X_new)

Comparison Between L1 regularization and L2 regularization

	L1 Regularization	L2 Regularization
————————	—————–	——————
solution uniqueness	No	Yes
sparsity	Yes	No
feature selection	Yes	No
computational efficiency	Low (No analytical solution)	High

How to choose between regression Models

	It is always preferable to have some regularization; thus, avoid plain Linear Regression models.

	Ridge Regression is a good default.

	If you suspect only a few features are actually useful, use either Lasso Regression or Elastic Net.

	Generally speaking, Elastic Net is more ideal than Lasso since Lasso may behave erratically (1) when the number of features (n) is greater the number of training instances (m) (2) when several features are strongly correlated.

Classification

Logistic Regression (Binary Classes)

Model

Estimate Probabilities:
$$\begin{align}
& p = \sigma(\theta^T \cdot x) \nonumber\
& \text{ where } \sigma(t) = \frac{1}{1 + e^{-t}} \nonumber
\end{align}$$

Prediction:

$$\hat y =
\begin{cases}
0 \text{ if } \hat p < 0.5,\1 \text{ if } \hat p >= 0.5.
\end{cases}$$

Cost function

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)}log(\hat p^{(i)}) + (1 - y^{(i)})log(1 - \hat p^{(i)})$$

Training

The function above is convex so gradient descent is guaranteed to find the global minimum.

Code

from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(X_train, Y_train)
log_reg.predict(X_new)

Logistic Regression (Multiple Classes)

Models

Compute score for each class:

$$s_k(\mathbf x) = (\theta^{(k)})^T \cdot \mathbf x$$

Note: Each class has its own set of θ_k

Normalize score with Softmax function:

$$\hat p_k = \frac {exp(s_k(\mathbf x))}{\sum_{i=1}^{k} exp(s_i(\mathbf x))}$$

Prediction:

$$\hat y = argmax_{k} ,\sigma(s(\mathbf x))_k = argmax_k ,s_k(\mathbf x)$$

Cost Function

$$J(\theta) = -\frac {1}{m} \sum_{i=1}^{m} \sum_{j=1}^{k} y_k^{(i)}log(\hat p_k^{(i)})$$

Training

	Gradient Descent

Code

from sklearn.linear_model import LogisticRegression

multi_log_reg = LogisticRegression(multi_class='multinomial', solver='sag', C=10)
multi_log_reg.fit(X_train, Y_train)
multi_log_reg.predict(X_train)

Metrics for Evaluation

For Regression Models

Mean Absolute Error (MAE)

$$MAE = \frac{1}{m} \sum_{i=1}^m \vert y^{(i)} - \hat y^{(i)} \vert$$

Mean Squared Error (MSE)

$$MSE = \frac{1}{m} \sum_{i=1}^m (y^{(i)} - \hat y^{(i)})^2$$

Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^m (y^{(i)} - \hat y^{(i)})^2}$$

Relative Absolute Error (RAE)

$$RAE = \frac{\sum_{i=1}^m \vert y^{(i)} - \hat y^{(i)} \vert}{\sum_{i=1}^m \vert y^{(i)} - \bar y^{(i)} \vert}$$

Relative Squared Error (RSE)

$$RAE = \frac{\sum_{i=1}^m (y^{(i)} - \hat y^{(i)})^2}{\sum_{i=1}^m (y^{(i)} - \bar y^{(i)})^2}$$

Squared Value (R^2)

$$R^2 = 1 - RSE$$

Support Vector Machines

Classification

Model

High Level Idea of SVMs

Functional Margin

Definition:
$$\hat \gamma^{(i)} = y^{(i)}(w^Tx + b)$$
Some Observations:

	If $y^{(i)} = 1$, the larger $w^Tx + b$ is, the larger the functional margin will be.

	The value of $\hat \gamma$ is affected by the scale of w and b; therefore, it is reasonable to introduce normalization.

Functional Margin for a dataset with m instances:
$$\hat \gamma = \min_{i=1,…,m} \hat \gamma^{(i)}$$
Geometric Margin

[image:]Geometric Margin
(Original Graph: http://cs229.stanford.edu/notes/cs229-notes3.pdf)

$$\gamma^{(i)} = \frac{w^Tx^{(i)} + b}{\Vert w \Vert} = \left(\frac{w}{\Vert w \Vert} \right)^T x^{(i)} + \frac{b}{\Vert w \Vert}$$

Define the geometric margin of (w, b) with respect to a training example ($x^{(i)}$, $y^{(i)}$):
$$\gamma^{(i)} = y^{(i)}\left(\left(\frac{w}{\Vert w \Vert}\right)^Tx^{(i)} + \frac{b}{\Vert w \Vert}\right)$$

Geometric Margin for a dataset with m instances:
$$\gamma = \min_{i=1,…,m} \gamma^{(i)}$$

Training

To train SVM, it is equivalent to find a hyperplane that can achieves the maximum geometric margin

\begin{equation}
\begin{aligned}
& \underset{\gamma, w, b}{\text{maximize}}
& & \gamma \
& \text{s.t.}
& & y^{(i)}(w^Tx^{(i)} + b) \geqslant \gamma\text{, } i=1,…,m, \
&&& \Vert w \Vert = 1.
\end{aligned}
\end{equation}

Since “$\Vert w \Vert = 1$” is a non-convex constraint, transform the problem into the following:

\begin{equation}
\begin{aligned}
& \underset{\gamma, w, b}{\text{maximize}}
& & \frac{\hat \gamma}{\Vert w \Vert} \
& \text{s.t.}
& & y^{(i)}(w^Tx^{(i)} + b) \geqslant \hat \gamma\text{, } i=1,…,m, \
\end{aligned}
\end{equation}

Introduce the scaling constraint that the functional margin of w, b with respect to the training set must be 1. That is, $\hat \gamma = 1$. The problem has become a convex quadratic objective with linear constraints and its solution gives use the optimal margin classifier.

\begin{equation}
\begin{aligned}
& \underset{\gamma, w, b}{\text{minimize}}
& & \frac{1}{2}\Vert w \Vert^2 \
& \text{s.t.}
& & y^{(i)}(w^Tx^{(i)} + b) \geqslant 1 \text{, } i=1,…,m, \
\end{aligned}
\end{equation}

The dual problem that used for Kernel tricks

\begin{equation}
\begin{aligned}
& \underset{\alpha}{\text{minimize}}
& & \sum_{i=1}^m \alpha^{(i)} - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha^{(i)} \alpha^{(j)} y^{(i)} y^{(j)} {\mathbf x^{(i)}}^T \mathbf x^{(j)}\
& \text{s.t.}
& & \alpha^{(i)} \geqslant 0 \text{, } i=1,…,m, \
\end{aligned}
\end{equation}

For soft margin classification:

\begin{equation}
\begin{aligned}
& \underset{\gamma, w, b}{\text{minimize}}
& & \frac{1}{2}\Vert w \Vert^2 + C \sum_{i=1}^m \zeta^{(i)}\
& \text{s.t.}
& & y^{(i)}(w^Tx^{(i)} + b) \geqslant 1 \text{, } i=1,…,m, \
& & & \zeta^{(i)} \text{, } i=1,…,m,
\end{aligned}
\end{equation}

Linear models

	Hard Margin: Strictly enforce that all instances must be off the margin and on the right sides.

	only works for linear separable datasets

	sensitive to outliers

	Soft Margin: Relax the restriction of hart margin model.

	In Scikit-Learn’s SVM classes, hyperparameter C is used to control the flexibility. A smaller C leads to a wider margin but more margin violations

from sklearn.pipeline import pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

svm_clf = Pipeline([
 ('scaler', StandardScaler()),
 ('linear_svc', LinearSVC(C=1, loss='hinge')),
])
svm_clf.fit(X_train, Y_train)

Non-linear models

In the dual form optimization problem above, ${\mathbf x^{(i)}}^T \mathbf x^{(j)}$ can be replaced with $K(\mathbf a, \mathbf b)$

	Polynomial Kernel
$$K(\mathbf a, \mathbf b) = {(\gamma \mathbf a^T \cdot \mathbf b + r)}^d$$

from sklearn.pipeline import pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC

poly_kernel_svm_clf = Pipeline([
 ('scaler', StandardScaler()),
 ('poly_svc', SVC(kernel='poly', degree=3, coef0=3, C=5)),
])
poly_kernel_svm_clf.fit(X_train, Y_train)

	Gaussian RBF Kernel
$$K(\mathbf a, \mathbf b) = exp(-\gamma \Vert \mathbf a - \mathbf b \Vert^2)$$

from sklearn.pipeline import pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC

rbf_kernel_svm_clf = Pipeline([
 ('scaler', StandardScaler()),
 ('rbf_svc', SVC(kernel='rbf', gamma=5, C=0.001)),
])
rbf_kernel_svm_clf.fit(X_train, Y_train)

	Sigmoid
$$K(\mathbf a, \mathbf b) = tanh(\gamma \mathbf a^T \cdot \mathbf b + r)$$

from sklearn.pipeline import pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC

sigmoid_kernel_svm_clf = Pipeline([
 ('scaler', StandardScaler()),
 ('sigmoid_svc', SVC(kernel='sigmoid')),
])
sigmoid_kernel_svm_clf.fit(X_train, Y_train)

Regression

Model

In an SVM regression problem, a model tries to keep as many points as possible inside a margin ϵ.

Training

The optimization problem for SVM regression is the following:

\begin{equation}
\begin{aligned}
& \underset{w, b}{\text{maximize}}
& & \frac{1}{2}\Vert w \Vert^2 \
& \text{s.t.}
& & y^{(i)} - (w^Tx^{(i)} + b) \leqslant \epsilon \text{, } i=1,…,m, \
& & &(w^Tx^{(i)} + b) - y^{(i)} \leqslant \epsilon \text{, } i=1,…,m, \
\end{aligned}
\end{equation}

To allow some points to be outside the margin, the optimization problem becomes:

\begin{equation}
\begin{aligned}
& \underset{w, b}{\text{maximize}}
& & \frac{1}{2}\Vert w \Vert^2 + C\sum_{i=1}^m (\zeta^{(i)} + {\zeta^{(i)}}^{}) \
& \text{s.t.}
& & y^{(i)} - (w^Tx^{(i)} + b) \leqslant \epsilon + \zeta^{(i)} \text{, } i=1,…,m, \
& & &(w^Tx^{(i)} + b) - y^{(i)} \leqslant \epsilon + {\zeta^{(i)}}^{} \text{, } i=1,…,m, \
& & & \zeta^{(i)}, {\zeta^{(i)}}^{} \geqslant 0
\end{aligned}
\end{equation*}

Code

from sklearn import LinearSVR

svm_reg = LinearSVR(epsilon=1.5)
svm_reg.fit(X_train, Y_train)

from sklearn import SVR

svm_reg = SVR(kernel='poly', degree=2, c=100, epsilon=0.5)
svm_reg.fit(X_train, Y_train)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/svm_geomargin.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up.png

_static/up-pressed.png

