

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.
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Cost Functions


Mean Squared Error (MSE)

$$MSE = \frac{1}{m} \sum_{i=1}^m (y^{(i)} - \hat y^{(i)})^2$$




Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^m (y^{(i)} - \hat y^{(i)})^2}$$




Mean Absolute Error (MAE)

$$MAE = \frac{1}{m}\sum_{i=1}^m \vert y^{(i)} - \hat y^{(i)} \vert$$




Comparisons


MSE v.s. MAE

|                        |MSE              |MAE               |
|————————|—————–|——————|
|Robustness to outliers  |Low              |High              |
|Stability of solution   |High             |Low               |
|Number of solutions     |Unique           |multiple          |









          

      

      

    

  

    
      
          
            
  
Decision Trees


Classification


Training

CART algorithm


	Find each feature’s best split


	For each continuous features, sort its values and find a value such that it achieves the best split


	For each categorial feature, find a category such that it achieves the best split






	Among the best splits in the previous step, select the one minimizing the cost function


	Split the node with the feature found in the previous step.




Cost function to minimize


	Gini impurity Based




$$J(k, t_k) = \frac{m_{left}}{m}G_{left} + \frac{m_{right}}{m}G_{right}$$
$$\text{where }G_i = 1 - \sum_{k=1}^n p_{i, k}^2$$


	Entropy Based




$$J(k, t_k) = \frac{m_{left}}{m}H_{left} + \frac{m_{right}}{m}H_{right}$$
$$\text{where }H_i = - \sum_{k=1}^n p_{i, k} \log_2(p_{i, k})$$


	Comparison between Gini impurity and Entropy





Most of the times, it does not make a difference choosing either of them. However, Gini impurity tends to isolate the most frequent class in its own branch of the tree while entropy tends to produce slightly more balanced trees.




Time complexity

Training time complexity is $O(n\text{ }m\text{ }log(m))$.

Regularization


	maximum depth of decision tree (max_depth)


	minimum number of sample split: the minimum number of samples a node must have before it can be split. (min_samples_split)


	minimum number of samples a leaf node must have (min_samples_leaf)


	maximum number of leaf nodes (max_leaf_nodes)


	maximum number of features to evaluate for split (max_features)







Code

from sklearn.tree import DecisionTreeClassifier


tree_clf = DecisionTreeClassifier()
# use "criterion" to choose between gini and entropy
tree_clf.fit(X_train, Y_train)










Regression


Model

In Decision Regression models, the predicted value is the mean of the trained samples in the leaf node that predicted instance ends up in.

$$\hat y_{node} = \frac{1}{m_{node}} \sum_{i \in node} y^{(i)}$$




Training

Cost function to minimize
$$J(k, t_k) = \frac{m_{left}}{m}MSE_{left} + \frac{m_{right}}{m}MSE_{right}$$




Code

from sklearn.tree import DecisionTreeRegressor


tree_reg = DecisionTreeRegressor()
tree_reg.fit(X_train, Y_train)










Instability of Decision Tree


	Decision trees splits perpendicularly to an axis which makes them sensitive to rotation of dataset. Therefore, applying PCA is a good idea before feeding training data into a decision tree model.


	Decision Trees are very sensitive to small variations in the training data.


	The training algorithm used by Scikit-Learn is stochastic since the algorithm selects the sets of features to evaluate at each node randomly.










          

      

      

    

  

    
      
          
            
  
Ensemble Learning


Voting


Model

Aggregate the predictions of several different models and predict the class that gets the most votes.

Due to the law of large number, even if each classifier were a weak learner (classifiers that perform only a little better than simply guessing), the ensemble could still be a strong learner.

Voting algorithm works best when the predictions are as independent from one another as possible.


	Hard Voting





Predicts the class that gets the most votes from the individual models





	Soft Voting





Predict the class with the highest probability, averaged over all the individual classifiers. Soft Voting is available when all the individual classifiers have predict_proba() method







Code

from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression


log_clf = LogisticRegression()
rnd_clf = RandomForestClassifier()

voting_clf = VotingClassifier(
    estimators=[('lr', log_clf), ('rf', rnd_clf)],
    voting='hard'   # for soft voting, assign `soft`
)
voting_clf.fit(X_train, Y_train)










Bagging & Pasting


Model

Train the same based model on different random subsets of the training set. The final predictions is typically the most frequent predictions of from the individual models or average for regression.

Bagging: sampling process is performed with replacement

Pasting: sampling process is performed without replacement

Random Patches: sampling both training instances and features.

Random Subspaces: sampling features but keeping all training instances

Why the net result is generally better?

Each individual model has a higher bias than if it were trained on the original training set. However, the ensemble model will achieve a similar bias but lower variance than a single model trained on the original training set.

Comparison between Bagging and Pasting:

Without replacement during the sampling process, pasting results in a slightly lower bias than bagging because each based model is trained on a more diverse subset. However, each based model also ends up being less correlated; therefore, the variance of the ensemble is reduced.




Out-of-Bag Evaluation

Use the instances in the training set which is never sampled and used to train models to evaluate the performance of the ensemble model so that the ensemble model could be evaluated without a separate validation set.




Code

# If a based model has `predict_proba` method,
# BaggingClassifier automatically performs soft voting
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier


bag_clf = BaggingClassifier(
    DecisionTreeClassifier(),
    n_estimators=500,
    max_samples=100,
    bootstrap=True,    # for bagging, bootstrap=True; for pasting, bootstrap=False
    )
bag_clf.fit(X_train, Y_train)





Out-of-bag evaluation

bag_clf = BaggingClassifier(
    n_estimators=500,
    max_samples=100,
    bootstrap=True,    # for bagging, bootstrap=True; for pasting, bootstrap=False
    oob_score=True,
    )
bag_clf.fit(X_train, Y_train)
print(bag_clf.oob_score_)










Random Forests


Model

Random Forests is an ensemble of Decision Trees, trained via the bagging method.

The algorithm introduces randomness when growing trees; instead of searching for the very best feature when splitting a node, it searches for the best feature among a random subset of features.




Code

from sklearn.ensemble import RandomForestClassifier


rnd_clf = RandomForestClassifier()
rnd_clf.fit(X_train, Y_train)










Boosting

###AdaBoost
Training (Classification)


	Initialize $w^{(i)} = \frac{1}{m} \text{for i = 1 … m}$


	For t = 1 … T


	train $model_t$ and compute error on the training set
$$r_t = \frac{\sum_{\hat y^{(i)} \neq y^{(i)}}w^{(i)}}{\sum_{i=1}^m w^{(i)}}$$


	Compute $model_t$’s weight $\alpha_t$. $\eta$ is learning rate
$$\alpha_t = \eta \log{\frac{1 - r_t}{r_t}}$$


	Update $w^{(i)}$ for $i = 1,…,m$
$$w^{(i)} =
\begin{cases}
w^{(i)}  & \text{if } \hat y_t^{(i)} = y^{(i)} \
w^{(i)}exp(\alpha_t) & \text{if } \hat y_t^{(i)} \neq y^{(i)}
\end{cases}$$








Model Prediction (Classification)
$$\hat y = {argmax}k {\sum{t=1}^T}_{\hat y_t = k} \alpha_t$$

Code (Classification)

from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier


ada_clf = AdaBoostClassifier(
    DecisionTreeClassifier(max_depth=1),
    n_estimators=200,
    algorithm='SAMME.R',
    learning_rate=0.5,
    )
ada_clf.fit(X_train, Y_train)





###Gradient Boosting
Training (Regression)

For t (step) = 1…T


	if t == 1:


	fit a model_t with the training dataset






	else:


	fit a a model_t with $\epsilon^{(i)}$






	calculate residual error
$$\epsilon^{(i)} = y^{(i)} - \hat y_t^{(i)}$$




Model prediction (Regression)

$$\hat y = \sum_{t=1}^T model_t(x)$$

Code (Regression)

from sklearn.ensemble import GradientBoostingRegressor


bg_reg = GradientBoostingRegressor()
bg_reg.fit











          

      

      

    

  

    
      
          
            
  

          

      

      

    

  

    
      
          
            
  
Linear Models


Regression


Linear Regression


Model:

$$\begin{align}
\hat y & = \theta_0 + \theta_1x_1 + \theta_2x_2 + … + \theta_nx_n \nonumber\
& = \theta^T \cdot \mathbf x \nonumber
\end{align}$$




Cost Function: Mean Squared Error

$$MSE(\theta) = \frac{1}{m} \sum_{i=1}^m (\theta^T \cdot \mathbf x^{(i)} - y^{(i)})^2$$




Training:


	The Normal Equation:
$$\hat \theta = (\mathbf X^T \cdot \mathbf X)^{-1} \cdot \mathbf X^T \cdot \mathbf Y$$


	Gradient Descent:

Refer to Gradient Descent



	The Normal Equation v.s. Gradient Descent





    
        
            	
            	Normal Equation
            	Gradient Descent
        

        
            	Pros
            	
                
                    	No need to choose $\alpha$

                    	No need to iterate

                

            
            	
            
                	Work well even $n$ is large

            

            
        

            	Cons
            	
                
                    	Need to calculate $(\mathbf X^T \mathbf X)^{-1}$

                    	Slow if $n$ is very large

                

            
            	
                
                    	Need to choose $\alpha$

                    	Need to iterate

                

            
        

    


#### CodeLinear Regression with Normal Equation:

from sklearn.linear_model import LlinearRegression


lin_reg = LlinearRegression()
lin_reg.fit(X_train, Y_train)
lin_reg.predict(X_new)





Linear Regression with Gradient Descent

from sklearn.linear_model import SGDRegressor


sgd_reg = SGDRegressor(n_iter=n_epochs, penalty=None, eta0=learning_rate)
sgd_reg.fit(X_train, Y_train)










Ridge Regression

Add L2 regularization to Linear Regression’s Cost function.


Model:

the same as linear regression




Cost Function:

$$J(\theta) = MSE(\theta) + \alpha\sum_{i=1}^n \theta_i^2$$




Training:


	The Normal Equation (Cholesky):
$$\hat \theta = (\mathbf X^T \cdot \mathbf X + \alpha \mathbf A)^{-1} \cdot \mathbf X^T \cdot \mathbf Y$$




where $\mathbf A$ is an identify matrix

	Gradient Descent:

Refer to Gradient Descent








Code

Ridge Regression with Cholesky Equation:

from sklearn.linear_model import Ridge


ridge_reg = Ridge(alpha=1, solver='cholesky')
ridge_reg.fit(X_train, Y_train)
ridge_reg.predict(X_new)





Ridge Regression with Gradient Descent:

from sklearn.linear_model import SGDRegressor


sgd_reg = SGDRegressor(penalty="l2")
sgd_reg.fit(X_train, Y_train)










Lasso Regression

Add L1 regularization to Linear Regression’s Cost function.


Model:

the same as linear regression




Cost Function:

$$J(\theta) = MSE(\theta) + \sum_{i=1}^n \vert \theta_i \vert$$




Training:


	Gradient Descent




The Lasso cost function is not differentiable at $\theta_i = 0$, but Gradient Descent still works fine if subgradient vector is used when $\theta_i = 0$




code

from sklearn.linear_model import Lasso


lasso_reg = Lasso()
lasso_reg.fit(X_train, Y_train)
lasso_reg.predict(X_new)





from sklearn.linear_model import SGDRegressor


sgd_reg = SGDRegressor(penalty='l1')
sgd_reg.fit(X_train, Y_train)
sgd_reg.predict(X_new)










Elastic Net

Add a mix of L1 and L2 regularization into Linear Regression’s cost function


Model:

the same as linear regression




Cost function

$$J(\theta) = MSE(\theta) + r\alpha\sum_{i=1}^n\vert\theta_i\vert + \frac{1-r}{2}\alpha\sum_{i=1}^n\theta_i^2$$




Training


	Gradient Descent







Code

from sklearn.linear_model import ElasticNet


elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5)
elastic_net.fit(X_train_, Y_train)
elastic_net.predict(X_new)










Comparison Between L1 regularization and L2 regularization

|                        |L1 Regularization| L2 Regularization|
|————————|—————–|——————|
|solution uniqueness     |No               |Yes               |
|sparsity                |Yes              |No                |
|feature selection       |Yes              |No                |
|computational efficiency|Low (No analytical solution)|High   |




How to choose between regression Models


	It is always preferable to have some regularization; thus, avoid plain Linear Regression models.


	Ridge Regression is a good default.


	If you suspect only a few features are actually useful, use either Lasso Regression or Elastic Net.


	Generally speaking, Elastic Net is more ideal than Lasso since Lasso may behave erratically (1) when the number of features ($n$) is greater the number of training instances ($m$) (2) when several features are strongly correlated.









Classification


Logistic Regression (Binary Classes)


Model

Estimate Probabilities:
$$\begin{align}
& p = \sigma(\theta^T \cdot x) \nonumber\
& \text{ where } \sigma(t) = \frac{1}{1 + e^{-t}} \nonumber
\end{align}$$

Prediction:

$$\hat y =
\begin{cases}
0 \text{ if } \hat p < 0.5,\1 \text{ if } \hat p >= 0.5.
\end{cases}$$




Cost function

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)}log(\hat p^{(i)}) + (1 - y^{(i)})log(1 - \hat p^{(i)})$$




Training

The function above is convex so gradient descent is guaranteed to find the global minimum.




Code

from sklearn.linear_model import LogisticRegression


log_reg = LogisticRegression()
log_reg.fit(X_train, Y_train)
log_reg.predict(X_new)










Logistic Regression (Multiple Classes)


Models

Compute score for each class:

$$s_k(\mathbf x) = (\theta^{(k)})^T \cdot \mathbf x$$

Note: Each class has its own set of $\theta_k$

Normalize score with Softmax function:

$$\hat p_k = \frac {exp(s_k(\mathbf x))}{\sum_{i=1}^{k} exp(s_i(\mathbf x))}$$

Prediction:

$$\hat y = argmax_{k} ,\sigma(s(\mathbf x))_k = argmax_k ,s_k(\mathbf x)$$




Cost Function

$$J(\theta) = -\frac {1}{m} \sum_{i=1}^{m} \sum_{j=1}^{k} y_k^{(i)}log(\hat p_k^{(i)})$$




Training


	Gradient Descent







Code

from sklearn.linear_model import LogisticRegression


multi_log_reg = LogisticRegression(multi_class='multinomial', solver='sag', C=10)
multi_log_reg.fit(X_train, Y_train)
multi_log_reg.predict(X_train)















          

      

      

    

  

    
      
          
            
  
Metrics for Evaluation


For Regression Models


Mean Absolute Error (MAE)

$$MAE = \frac{1}{m} \sum_{i=1}^m \vert y^{(i)} - \hat y^{(i)} \vert$$




Mean Squared Error (MSE)

$$MSE = \frac{1}{m} \sum_{i=1}^m (y^{(i)} - \hat y^{(i)})^2$$




Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^m (y^{(i)} - \hat y^{(i)})^2}$$




Relative Absolute Error (RAE)

$$RAE = \frac{\sum_{i=1}^m \vert y^{(i)} - \hat y^{(i)} \vert}{\sum_{i=1}^m \vert y^{(i)} - \bar y^{(i)} \vert}$$




Relative Squared Error (RSE)

$$RAE = \frac{\sum_{i=1}^m (y^{(i)} - \hat y^{(i)})^2}{\sum_{i=1}^m (y^{(i)} - \bar y^{(i)})^2}$$




Squared Value ($R^2$)

$$R^2 = 1 - RSE$$









          

      

      

    

  

    
      
          
            
  
Support Vector Machines


Classification


Model


High Level Idea of SVMs

Functional Margin


Definition:
$$\hat \gamma^{(i)} = y^{(i)}(w^Tx + b)$$
Some Observations:


	If $y^{(i)} = 1$, the larger $w^Tx + b$ is, the larger the functional margin will be.


	The value of $\hat \gamma$ is affected by the scale of $w$ and $b$; therefore, it is reasonable to introduce normalization.




Functional Margin for a dataset with $m$ instances:
$$\hat \gamma = \min_{i=1,…,m} \hat \gamma^{(i)}$$
Geometric Margin


[image: ]Geometric Margin
(Original Graph: http://cs229.stanford.edu/notes/cs229-notes3.pdf)

$$\gamma^{(i)} = \frac{w^Tx^{(i)} + b}{\Vert w \Vert} = \left(\frac{w}{\Vert w \Vert} \right)^T x^{(i)} + \frac{b}{\Vert w \Vert}$$

Define the geometric margin of ($w$, $b$) with respect to a training example ($x^{(i)}$, $y^{(i)}$):
$$\gamma^{(i)} = y^{(i)}\left(\left(\frac{w}{\Vert w \Vert}\right)^Tx^{(i)} + \frac{b}{\Vert w \Vert}\right)$$

Geometric Margin for a dataset with $m$ instances:
$$\gamma = \min_{i=1,…,m} \gamma^{(i)}$$

Training


To train SVM, it is equivalent to find a hyperplane that can achieves the maximum geometric margin

\begin{equation}
\begin{aligned}
& \underset{\gamma, w, b}{\text{maximize}}
& & \gamma \
& \text{s.t.}
& & y^{(i)}(w^Tx^{(i)} + b) \geqslant \gamma\text{, } i=1,…,m, \
&&& \Vert w \Vert = 1.
\end{aligned}
\end{equation}

Since “$\Vert w \Vert = 1$” is a non-convex constraint, transform the problem into the following:

\begin{equation}
\begin{aligned}
& \underset{\gamma, w, b}{\text{maximize}}
& & \frac{\hat \gamma}{\Vert w \Vert} \
& \text{s.t.}
& & y^{(i)}(w^Tx^{(i)} + b) \geqslant \hat \gamma\text{, } i=1,…,m, \
\end{aligned}
\end{equation}

Introduce the scaling constraint that the functional margin of $w, b$ with respect to the training set must be 1. That is, $\hat \gamma = 1$. The problem has become a convex quadratic objective with linear constraints and its solution gives use the optimal margin classifier.

\begin{equation}
\begin{aligned}
& \underset{\gamma, w, b}{\text{minimize}}
& & \frac{1}{2}\Vert w \Vert^2 \
& \text{s.t.}
& & y^{(i)}(w^Tx^{(i)} + b) \geqslant 1 \text{, } i=1,…,m, \
\end{aligned}
\end{equation}

The dual problem that used for Kernel tricks

\begin{equation}
\begin{aligned}
& \underset{\alpha}{\text{minimize}}
& & \sum_{i=1}^m \alpha^{(i)} - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m \alpha^{(i)} \alpha^{(j)} y^{(i)} y^{(j)} {\mathbf x^{(i)}}^T \mathbf x^{(j)}\
& \text{s.t.}
& & \alpha^{(i)} \geqslant 0 \text{, } i=1,…,m, \
\end{aligned}
\end{equation}

For soft margin classification:

\begin{equation}
\begin{aligned}
& \underset{\gamma, w, b}{\text{minimize}}
& & \frac{1}{2}\Vert w \Vert^2 + C \sum_{i=1}^m \zeta^{(i)}\
& \text{s.t.}
& & y^{(i)}(w^Tx^{(i)} + b) \geqslant 1 \text{, } i=1,…,m, \
& & & \zeta^{(i)} \text{, } i=1,…,m,
\end{aligned}
\end{equation}




Linear models


	Hard Margin: Strictly enforce that all instances must be off the margin and on the right sides.


	only works for linear separable datasets


	sensitive to outliers






	Soft Margin: Relax the restriction of hart margin model.


	In Scikit-Learn’s SVM classes, hyperparameter C is used to control the flexibility. A smaller C leads to a wider margin but more margin violations








from sklearn.pipeline import pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC


svm_clf = Pipeline([
            ('scaler', StandardScaler()),
            ('linear_svc', LinearSVC(C=1, loss='hinge')),
        ])
svm_clf.fit(X_train, Y_train)








Non-linear models

In the dual form optimization problem above, ${\mathbf x^{(i)}}^T \mathbf x^{(j)}$ can be replaced with $K(\mathbf a, \mathbf b)$


	Polynomial Kernel
$$K(\mathbf a, \mathbf b) = {(\gamma \mathbf a^T \cdot \mathbf b + r)}^d$$




from sklearn.pipeline import pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC


poly_kernel_svm_clf = Pipeline([
            ('scaler', StandardScaler()),
            ('poly_svc', SVC(kernel='poly', degree=3, coef0=3, C=5)),
        ])
poly_kernel_svm_clf.fit(X_train, Y_train)






	Gaussian RBF Kernel
$$K(\mathbf a, \mathbf b) = exp(-\gamma \Vert \mathbf a - \mathbf b \Vert^2)$$




from sklearn.pipeline import pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC


rbf_kernel_svm_clf = Pipeline([
            ('scaler', StandardScaler()),
            ('rbf_svc', SVC(kernel='rbf', gamma=5, C=0.001)),
        ])
rbf_kernel_svm_clf.fit(X_train, Y_train)






	Sigmoid
$$K(\mathbf a, \mathbf b) = tanh(\gamma \mathbf a^T \cdot \mathbf b + r)$$




from sklearn.pipeline import pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC


sigmoid_kernel_svm_clf = Pipeline([
            ('scaler', StandardScaler()),
            ('sigmoid_svc', SVC(kernel='sigmoid')),
        ])
sigmoid_kernel_svm_clf.fit(X_train, Y_train)












Regression


Model

In an SVM regression problem, a model tries to keep as many points as possible inside a margin $\epsilon$.




Training

The optimization problem for SVM regression is the following:

\begin{equation}
\begin{aligned}
& \underset{w, b}{\text{maximize}}
& & \frac{1}{2}\Vert w \Vert^2 \
& \text{s.t.}
& & y^{(i)} - (w^Tx^{(i)} + b) \leqslant \epsilon \text{, } i=1,…,m, \
& & &(w^Tx^{(i)} + b) - y^{(i)} \leqslant \epsilon \text{, } i=1,…,m, \
\end{aligned}
\end{equation}

To allow some points to be outside the margin, the optimization problem becomes:

\begin{equation}
\begin{aligned}
& \underset{w, b}{\text{maximize}}
& & \frac{1}{2}\Vert w \Vert^2 + C\sum_{i=1}^m (\zeta^{(i)} + {\zeta^{(i)}}^{}) \
& \text{s.t.}
& & y^{(i)} - (w^Tx^{(i)} + b) \leqslant \epsilon + \zeta^{(i)} \text{, } i=1,…,m, \
& & &(w^Tx^{(i)} + b) - y^{(i)} \leqslant \epsilon + {\zeta^{(i)}}^{} \text{, } i=1,…,m, \
& & & \zeta^{(i)}, {\zeta^{(i)}}^{} \geqslant 0
\end{aligned}
\end{equation*}




Code

from sklearn import LinearSVR


svm_reg = LinearSVR(epsilon=1.5)
svm_reg.fit(X_train, Y_train)





from sklearn import SVR


svm_reg = SVR(kernel='poly', degree=2, c=100, epsilon=0.5)
svm_reg.fit(X_train, Y_train)
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